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sheet, and metal f o i l  i s  used t o  solve the two-dimensional 

Fourier equations. The analog was used t o  find the tempera- 

ture  distribution on t he  entrance walls f o r  the case of a 

steady "creeping" f l o w  i n  the entrance region of ducts with 

variously shaped noncircular cross sections. 

- -  

It i s  necessary i n  many present-day heat exchangers, i n  order t o  reduce 

Often the i r  size and weight, t o  use ducts with a noncircular cross section. 

the length of the duct i s  so short that  the temperature and velocity profiles do 

not have a chance t o  become fully developed before the f lu id  has emerged from 

the tube. Consequently, i n  m y  compact heat exchangers the thermal and f luid 

entrance region occupies a considerable fraction of the duct length. 

For a fu l ly  developed turbulent flow of liquid metal i n  circular duc ts ,  

Lyon (ref.  1) , Clayborne (ref.  2) , and others have ascertained tha t  the heat 

transfer characteristics may be calculated by means of a suitable coaibination 

of individual factors due t o  molecular conduction and turbulent exchange. 
c 

In- 

asmuch as the velocity profile i n  a turbulent flow approximates the profile of a 

slow flow, the convective heat transfer may be calculated from the magnitude of 

the mlecular conductivity on the basis of the energy equation, wherein the rea l  

boundary conditions assuming a constant velocity distribution are used. 

%anslated (into Russian) by E. A. Bogacheva. 
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Hartnett and I-oe (ref. 3) have used t h i s  method t o  analyze heat transfer i n  

noncircular ducts. 

conditions tha t  could exis t  i n  the investigation of heat transfer i n  noncirzular 

tubes. Theyindicated, i n  particulas, t ha t  i f  the heat flux i s  given, one should 

be primarily concerned with the peripheral temperature distribution a t  the w a l l ,  

since the s t ruc ture  of the flow usually requires the mximum working tempera- 

P.lso investigated in t h i s  paper were the various boundary 

ture  possible. Consequently, the wall temperature distribution determined i n  

the analysis of the s l o w  flow problem may be taken as a limiting case in turbu- 

lent  flow. 

temperature distribution of creeping flow. 

Any turbulent transport will have a smoothing influence on the 

The objective of the present ar t ic le  i s  t o  investigate these creeping flow 

temperature distributions i n  the entrance region of ducts with va r ious  types of 

noncircular cross  sections. These temperature distributions represent limitine/n 
cases, but they maybe used t o  build simplified constructions appro-tingthe 

actual design conditions for small Re nuuibers i n  turbulent flow. 

It i s  also instructive t o  note t h a t  the problem of convection of a steady 

creeping flow i s  a t  once the problem of heat conduction of a nonsteady flow for 

the case of a plane solid of the same cross section and under identical  boundary 

conditions. The solutions given i n  the present a r t i c l e  for a l l  cross section 

configurations, with the exception of paral le l  plates and circles,  have never 

been derived before. 

INITIAL EQUATIONS AND ESECTRICAL SIMULATIOM PRINCIPLES 

Consider the entrance region of a duct with a constant cross section 

(fig. l a ) .  

the duct a t  a constant velocity W. 

Fluid enters the duct  at  a constant temperature T flowing through 

The coordinate system i s  chosen so tha t  the 

0’ 

z-axis will pass through the center of the duct cross section, the origin being 
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located a t  the duct entrance. 

the part  of the f lu id  i n  an incompressible f l o w ,  only an inconsequential v i s -  

cous dissipation of energy, and l o w  theriaal conductivity i n  the  ax ia l  direction, 

the heat conduction equation for  a steady-state flow may be written as  follows: 

With constant themphysical  chasacteristics on 

For a constant heat flux, the  boundary conditions fo r  Eq. (1) a t  the surface u 

are the following 

With the  dimensioress v a r i ~  

n 
dh 

N==- , equation (1) and i t s  associated boundary conditions are reduced t o  

dimensionless form. Equation (1) becomes 

and the boundary conditions (2) and (3) a t  the surface are as follows: 

dB 1 - -- 
dN 4 '  

e (X, Y, 0) = 0. 

The reduced temperature of the f luid i s  determined by the  heat balance 

equation for  an element of fluid: 

d7-, = qmp &. 
wApc 

Integrating from '+, = To, z = 0 t o  T, = Tb, z = z, we obtain 



Reducing it t o  dimensionless form, we obtain 

eb = z. 

Figure 1. Diagram of Noncircular Duct (a) and Electrical  Analog Model (b) : 
1) Conducting Sheet; 2) Dielectric; 3) Metal Foil. 

Let us  now exanrine an electr ical  model (ref. 4) consisting of a t w n  a- 
e lec t r ic  sheet placed between electr ical ly  conducting s tee l  sheet and a sheet 

of metal f o i l  (Fig. lb). 

azlc =c+*(Xn, Jm), the form of which i s  the same as the duct cross section ~ ( x ,  y). 

The coordinate system (Xn, p) i s  oriented such tha t  the origin i s  located a t  

the center of the curve@, the *-plane coinciding with the plane of  the 

model. 

The boundary of the model i s  the curve 

Electric current can flow i n  the mde l  via the curve+, and the 
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e lec t r ica l  c i rcui t  i s  closed by grounding the metal fo i l .  If the resistance of 

the conducting sheet and the thickness of the dielectr ic  axe uniform over the 

entire model, the i n i t i a l  differential  equation becomes 

8 E  d2E dE -+-=RC-. at 
ax& ay 

If after the passage of a certain t i m e  t = 0 the e lec t r ic  current flowing 

i n  the model i s  constant over a u n i t  length of the c u r v e u *  and if the entire 

model i s  subjected t o  a uniform potential E un t i l  the t i m e  t 5: 0, the boundary 

conditions of equation (11) a t  t h e  surface d w i l l  be as follows: 

i aE .- - - - Ri, I const, - 
an* 

I E (x*; y', 0) = E, = const. 

These equations reduce t o  normal forn with a suitable choice of the /l3 . _  
t X* Y' 

following dimensionless variables: e'= P =  dfRc ' x* = - & '  4i&R * 

n* N* s- $ ,  as a r e s u l t  of which equation (11) 'assumes the form 
' r '  . d i  

-+-=- ate* 3 6% 
~1x8~ w 2 az* de* . I 

and the boundary conditions (12) and (13) a t  the surface E* become 

The reduced p o t e n t i a l 5  on the  electr ical  mdel  may be determined by 

formulating the energy balance equation f o r  the model: 

5 
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In t ega t ing  f r o m  Eo t o  I$ and from to t o  t, we obtain 

or, i n  dimensionless form, 

Comparing equation (4) and i ts  boundary conditions (5), (6) with equation 

(14) and i t s  boundary conditions (15), (I&), we note tha t  both systems of equa- 

t ions  are identical. 

a solution of the  other system of equations. 

heat input i s  replaced by constant influx of current i n  the e lec t r ica l  model. 

Consequently, the solution of one system of equations is  

The boundary condition of constant 

The present investigation i s  based on t h i s  analogy 

mmAL PART 

The appara tus  was made ap of the components shown i n  figure 2. In order 

t o  approximate a constant flow of current i n  the  model a t  the  boundary, it was 

necessary t o  divide the current supply in to  a defini te  nuniberof. dcinputs along 

the boundary. The method yielding the most satisfactory results i s  i l lus t ra ted  

i n  figure 3. 

For the resistance, we used conducting paper with R = 14-00 ohms per square  

The resistance of t h i s  sheet was l inear  within 2$ i n  any direction, but inch. 

it was approximately lO$ higher across the sheet than along it. 

render the resistance of the  model uniform i n  every direction, the models were 

fabricated fromtwo layers of conducting sheet, cut out so tha t  the  cross 

In order t o  
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Figure 2. Principal Components of the Apparatus:  

1) Protective Shield; 2) Protective Insert;  3) Protective Plate; 4) Flange; 
5) Common Busbar; 6) Input Resistances; 7) Measurement Panel; 8) Aluminum Foil; 
9) Oscilloscope; 10) Dielectric; 11) Upper H a l f  of Resistance Model; 12) Upper 
H a l f  of A u x i l i a r y  Model; 13) L o w e r  Half of Resistance Model; 14) Lower H a l f  of 
Auxiliary Model; 15) Dielectric; 16) Square Pulse Generator; 17) Aluminum Foil; 
18) Frame; 19) Rubber Insert;  20) Cast Iron Plate; 21) Pressure Tank; 22) Pres- 
su re  Indicator. 

direction of half the  model would correspond t o  the long direction of the 

other half. 

of the mdels  was about 700 ohms per square inch. 

& 
When the conducting sides of the paper w e r e  joined, the  resistance 

To increase the capacitance of the model, the sheets of the d ie lec t r ic  and 

metal f o i l  were placed on e i ther  side of the model made up of the resistances 

7 



(fig.  3). A s  a result ,  the capacitance of the model was appro-tely equal t o  

Figure 3. 
w i t h  Cross Section i n  the Shape of an Equilateral Triangle. 
t ion  and Layout of These Models are Shown: 
t r i c ;  d) Upper Half of Resistance Model; a ') Auxiliary Model; e) Lower Ealf 
of Resistance Model; e l )  Auxiliary Model; f )  Dielectric; g) Foil. 1) Corn- 
m n  Busbar; 2) Input Resistances; 3) Boundary; 4) Auxiliary Model; 
5) Adiabatic Lines; 6) Conducting Sheet; 7) Foil; 8) Dielectric; 9) Si lver  
Paint. 

Basic and Auxiliary Models Used t o  Solve the Problem of a Duct 

a) Panel; b) Foil; c) Dielec- 
The Construc- 

Instead of measuring a l l  the parameters required in order t o  determine the 

dimensionless potentiale* and dimensionless time Z*, we constructed an auxiliary 

model of conducting sheet, which was joined direct ly  with the sheet from which 

the main model was cut. 

conducting sheet situated a t  r ight angles t o  one another. 

The auxiliary model was again cut out of t w o  pieces of 

8 



It i s  apparent fromthe analysis t ha t  the potential measured a t  the inputs 

of the  awdliary model i s  given by 

Another use fu l  measurement maybe performed on the  model i tself .  The slope 
~ 

Invoking the  dimensionless variables, we obtain 

Consequently, e* and Z* may be ascertained from measurements of Eo, E, t, q, /1$ 
and dE/dt. 

The frame fo r  the model was constructed so as t o  protect the model and in- 

put resistances f r o m  harmful e lec t r ica l  effects  without the buildup of added 

injurious capacitance. A rubber inser t  held the model and auxiliary model t igh t  

with a uniform pressure of approximately seven pounds per square inch when pres- 

sure was created in  the tank by a bicycle pump. Forty holes 3/16 of an inch in  

diameter w e r e  d r i l l ed  along the base of the protective cover, so t ha t  the oscil-  

loscope probes could be brought i n  contact with each input resistance. 

shielded lead was connected to the busbar f o r  the power supply,  which was fed i n  

through the end of the protective cover. 

inches and it terminated i n  a banana jack, which was connected t o  the output of 

A 
~ 

The length of the  lead-in was three 
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a square pulse generator with a resistance of 600 ohms and a voltage of 55 V. /16 
Pertinent data on the construction of the mdel  and the experimental technique 

may be found i n  reference 5. 

COMpAlUSON OF TKE MDDEL ANI> AIWLlTICAL SOLELTONS 

The analytical solutions for the wall temperature distributions i n  creep- 

ing flow i n  circular ducts and between paral le l  plates with constant heat flux 

a t  the wall may be obtained from the solutions given i n  reference 6 for  non- 

steady-state convection. Transforming these solutions into dimensionless 

variables, we obtain 

for  parallel  plates and 

for  circular ducts. 

Using up t o  35 yerms of the series, Zess has computed the dimensionless 

temperature 6 

surfaces of parallel  plates. 

a t  the w a l l  f o r  various positions Z along the duct and for  the 
W 

These results are indicated by the solid curves i n  

figure 4, which also gives the previously described experimental data obtained 

on our apparatus. It i s  evident f r o m  figure 4 tha t  the experimental results 

are i n  good agreement with the theoretical data. 

SOLUTIONS FOR EQUIlXTEEAL POLYGONS 

Measurements were performed using other geometries and employing the same 

experimental methods. 

and 5. 

Data on an equilateral tr iangle are shown i n  figures 4 

The variation of the dimensionless wall temperature i n  t w o  positions 
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Figure 4. Dimensionless Temperature Distribution a t  the Wall 
f o r  Ducts A, B, C (See Table) : 

1) Solution Obtained with Series; 2) Model No. P1; 3) Model N 0 . E ;  
4) Model No. C1; 5) Model No. C2; 6) Asymptotic Solution of 
Clayborne; 7)  Analog Solution; 8) Model No. T1; 9)  Model No. E. 

moving downward along the tube i s  shown i n  figure 4. 

perature distributions a t  various distances *om the input are given in it"igure/17 

The peripheral wall tem- 

5. 

Figure 5. Dimensionless Temperature Distribution a t  the W a l l  
of Ducts with Cross Sections C and D fo r  Various Values of Z: 

z = 1) 0.250; 2) 0.225; 3) 0.200; 4) 0.175; 5) 0.150; 6 )  0.125; 
7) 0.100; 8) 0.075; 9) 0.050; 10) 0.025; 11) 0.10; 12) 0.08; 

13) 0.06; 14) 0.04; 15) 0.02. 
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The dashed curves i n  both figures correspond -3 solutions given i n  refer- 

ence 2 for a completely steady flow. 

agreement with the theoretical data. 

represents a graph of a series of experimental curves analogous t o  the curves 

in figure 4. 

The experimental resul ts  are again i n  good 

It i s  important t o  note tha t  figure 5 

TABU 

DUCTS OF VARIOUS S " E S  WIT€I TBE BOUKOARY C0ITDI"ION 9, = const 

Duct 

A 

. B  

I I  

c .  

D 

-- 

Sect ion Duct 

E 

F 

G 

Sect ion 

The wall temperature distributions for  squares, pentagons, hexagons, and 

octagons axe given i n  figures 5 and 6, i n  correspondence with the table. The 

dashed curves again correspond t o  the asymptotic solutions for points far re- 

moved from the duct entrance region. These asymptotic solutions are obtained 

fromthe solutions f o r  an equilateral polygon with n sides: 

1 
32 IS n 

0, = 2 + - + - 

which, t o  the best of the author's knowledge, has not been published heretofore. 
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Figure 6. Dimensionless Temperature Distribution at the Wall for & 

Ducts with the Shapes E, F, G for Various Values of Z: 

z = 1) 0.09; 2) 0.08; 3 )  0.07; 4) 0.06; 5) 0.05; 6 )  0.04; 7) 0.03; 
8) 0.02; 9) 0.01; 10) 0.10; 11) 0.08; 12) 0.06; 13) 0.04; 15) 0.150; 

16) 0.225; 17) 0.100; 18) 0.075; 19) 0.050; 20) 0.025. 

SUMMARY OF NOMEXCLATURE 

I A = cross sectional area of duct; A* = surface area of electrical model; 

Bn = positive roots of the equation Jl(B) = 0; c = specific heat; C = capacitance 

I of model per unit area; % = hydraulic diameter of duct; = hydraulic diameter 

of electrical model; E = potential at any point on the electrical model; E 

= potential at the input to the auxiliary model; i 

model per unit length along the boundary; J1 E first-order Bessel function; k = 

= coefficient of thermal conductivity; n = distance perpendicular to the duct 

wall; Im = distance perpendicular to the boundary of the electrical model; N = 

= 
aux 

= electric current in the 
I 

W 

= dimensionless distance normal to the duct w a l l ,  M 5: n/\; ~n = dimensionless 

distance normal to the boundary of the electricalmdel, Nn = */q; P = duct 

perimeter; 

= v/a; R = heat flux of fluid per unit cross sectional area of duct; R = resis- 

tance of conducting sheet; Re = Reynolds nuniber, Re = udn/v; t = time; T = tem- 

perature; w = velocity of fluid in z-direction; x, y, z = coordinates in the 

P = perimeter of the electrical model; Pr  = Prandtl number, Pr 3: 
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investigated thermal system; 3, y]c = coordinates of e lectr ical  analog model; 

X, Y, Z = dimensionless coordinates o f  thermal system, X = x/%, Y = y/%, Z = 

= z/%RePr; XSC, Y*, Z* = dimensionless coordinates i n  electrical  analog model, 

x* = e/%, y;n = fl/%, Z* = t/d$%C!; - a = thermal diffusivity, a = k/pc; 6 = 

= dimensionless temperature, 6 = (T - T0)k/4Sl,dh; 6" = dimensionless potential, 

e* = (E - Eo) /4 iwqR;  p = density; u = inside surface of duct; + = curve cor- 

responding t o  the boundary of the electrical  analog model; Z: = dimensionless 

f o r a  of curve 0; z:* = m n s i o n l e s s  form of curve Cm. 

o r  average; w) wall, or  boundary; 0) condition a t  z = 0 or t = 0. 

Subscripts: b) reduced, 

REFEXENCES 

1. L p n ,  R. N. 

2. 

3. Hartnett, J. P. and T. I?. Imine, Jr. J. Am. Inst. Chem. Engrs., Vol. 3, 

Oak Ridge National Laboratory Report 361, 1949. 

Claflorne, H. C. Oak Ridge National Laboratory Report 985, 1951. 

1957. 

4. Fatt ,  I. 

5. 

6. Siegel, R. Trans. ASME, Vol .  81, 1959. 

J. Am. Inst. Chem. Engrs., Vol .  4, 1958. 

Pearson, J. T. M. 5'. Tbesis, North Carolina State College, 1961. 

6 March 1963 New York University 

Translated f o r  NASA by S t e m  Engineering, Inc. 
4940 Long Beach Blvd., Long Beach, California 

14 


